
TMCEnhancedListBox Component
See also Properties Methods Events

This Delphi VCL component eases the hassle of neatly aligning text in list boxes. Just place
as many labels as you need (up to 10) over this component, and select the "SmartGrab"
choice on the popup menu. Or select the Edit option to pick the labels you want yourself.

One important note about the SmartGrabber: ALL labels youve placed above the listbox HAS
to have the EXACT SAME Top value, as this is what the component uses to distinguish labels
to include in its search. The easiest way to ensure this is to use Edit|Align.

If you use one or the other of the above techniques, you can use this listbox without being
aware of the Label properties, it is taken care of by the component editor.

The text that is to be displayed in the listbox has to be split into pieces with the Separator
character, to facilitate easy and quick parsing at runtime.

Ordering information
Version history
Contacting the author

Properties
Runtime only

Key proerty

Align InhibitRefresh PartX
BorderStyle IntegralHeight PopupMenu
Canvas ItemHeight SelCount
Color Items Selected
Ctl3D Label Separator
Cursor Labels ShowHint
DragCursor MultiSelect Sorted
DragMode Name Style
Enabled ParentColor TabOrder
ExtendedSelect ParentCtl3D TabStop
Font ParentFont TopIndex
HelpContext ParentShowHint
Hint PartString

InhibitRefresh property
Declaration:
property InhibitRefresh: boolean;

Description:
This property is runtime-only and is used to prevent flickering when updating more than one
label. Use it with care, ALWAYS inside a try/finally block, so that your listbox wont be left in
this state for eternity!

Label property
Declaration:
property Label1: TLabel;
property Label2: TLabel;
property Label3: TLabel;
.
.
.
property Label10: TLabel;

Description:
There are ten properties, named Label1, Label2, and so on up to Label10. These properties
govern the positioning of one listbox column each. If a Label is not assigned, the next label is
used. There is no way for the component to know when you move a Label associated with it,
so you have to choose Refresh from the popup menu to show the new look youve just
created.

Instead of using this property, however, you can use the commands on the popup menu -
they do all this automatically.

Labels property
Declaration:
property Labels[Index: integer]: TLabel;

Description:
This runtime-only property gives you access to the labels associated with the listbox as an
indexed array of TLabels. we provided it for the situations when you create a form at
runtime, and want to set the labels associated with the listbox..

PartString property
Declaration:
property PartString[ItemNo, PartNo: integer]: string;

Description:
This property, along with the PartX property, is primarily used for owner-drawn listboxes, to
get at the string at a certain position in the item. If you have an item that looks like Hello|
World and Separator is |, PartString[ItemNo, 2] would return World. From this it also should
be clear that the parts are numbered started at 1, mainly because we think that is more
natural and it doesnt matter to the computer.

PartX property
Declaration:
property PartX[PartNo: integer]: integer;

Description:
This property, along with the PartString property, is primarily used for owner-drawn listboxes,
to get the position for the part, determined by its corresponding label. The items are
numbered starting from 1, for the reasons outlined in the description for PartString. The
value is relative to the leftmost edge of the listbox.

Separator property
Declaration:
property Separator: string;

Description:
This property is used in the parsing of the strings into the parts displayed. The whole string
is needed to separate the parts, so be careful if you use more than one character here! The
default value, #9 (a tab character) isnt used very often because it isnt properly expanded by
the Delphi list boxes, and is thus a suitable candidate for separating the parts.

Methods
Create
Destroy
Clear
ItemAtPos
ItemRect

Events
OnClick OnEndDrag OnKeyUp
OnDblClick OnEnter OnMouseDown
OnDragDrop OnExit OnMouseMove
OnDragOver OnKeyDown OnMouseUp
OnDrawItem OnKeyPress

Ordering information
The registration fee for the component is $15 without source and $30 with source. This is for
electronic registration only, you have to supply us with an electronic address (CompuServe,
InterNet or FidoNet) to which we can send the registered version. If you want a disk, contact
us!

Whatever way you do it, you receive the same benefits - a version that works outside the
IDE. In addition your conscience will stop hurting, and youll be able to distribute programs
using the component (unregistered version requires Delphi to be running).

You can register this pack in four ways:
CompuServe SWREG, register    #10732 (without source, $15) or #10733 (includes source,
$30)
Sending check or money order drawn on a Swedish bank
Sending cash in an envelope (if you dare)
Direct bank transfer, using the below information:
Account 8313-9 3.441.335-1
Kristianstads Sparbank
Via SwedBank, Stockholm
Swift Code SWEDSESS

Our mailing adress is as follows (see Contacting the author for other addresses)

MegaComm HB
Att Christian Tiberg
V Storgatan 67A
S-291 53    Kristianstad
SWEDEN

Version history
0.01 First limited beta release
0.02 Added Methods to the help file
0.03 Added ed_ footnotes to the help file - undocumented by Borland…
1.00 First official release

Contacting the author
We can be reached through a lot of methods and addresses:

CompuServe: 100777,2775
InterNet: ctiberg@silver.ct.se
FidoNet: 2:200/602
Phone: +46-44-103435
Fax: +46-44-248874
BBS: +46-44-125230
Snail mail: MegaComm HB

Att Christian Tiberg
V Storgatan 67A

S-291 53    Kristianstad
SWEDEN

